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Many approximation methods in C2? may be generated via a certain function
. # C[0, 1] with .(0)=1, .(1)=0. The function .j (t)=cos( j&1�2)?t ( j # N)
generates the Rogosinski approximation method [N. K. Bari, ``A Treatise on Tri-
gonometric Series,'' Vols. I, II, Pergamon Press, New York, 1964]. Our idea consists
in representing . by the orthogonal system .j to extend results previously known for
the Rogosinski method to arbitrary approximation methods. We illustrate this by
proving two asymptotic estimates for the measure of approximation. � 1997 Academic

Press

1. INTRODUCTION

Let us consider the triangular *-means

Un( f, x) :=
A0

2
+ :

n

k=1

*k(n)(Ak cos kx+Bk sin kx) (1)

of the real Fourier series of a 2?-periodic continuous function f # C2? . In
approximation theory [2, 6] the following problem is set: find an
asymptotic expansion for the quantity

e(A, Un) :=sup
f # A

& f&Un f&C 2? (2)

called the measure of approximation of the class A/C2? by the operator
Un : C2? � C2? . This problem is often referred to as the Kolmogorov�
Nikolski@$ problem due to the introductory papers [5, 9] by these authors.
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Afterward a number of authors [7, 8, 12] became interested in this
problem. For more detailed references see [11], which is entirely dedicated
to the Kolmogorov�Nikolski@$ problem. Our paper is related closely to the
paper [3], where the authors solved the Kolmogorov�Nikolski@$ problem
for the Sobolev classes Wr (r # N) by the Rogosinski means. The class Wr

will be defined as the set of all functions f # C2? which are (r&1)-times
differentiable everywhere, f (r&1) is absolutely continuous on [&?, ?], and
& f (r)&��1.

In this paper we present a new general method for solving the
Kolmogorov�Nikolski@$ problem. A short version of our method appeared
in [4]. Unfortunately, there was a misprint in Theorem 1. In the second
equality 2�? must be replaced by 4�?2.

Let us describe our method more closely. The triangular *-means (1) are
called the Rogosinski means if *k(n)=cos(k?�2n) and were introduced by
Rogosinski in [10]. These means are a special case of the means (1)
defined by a continuous function . # C[0, 1] with .(0)=1, .(1)=0, for
which *k(n)=.(k�n). Therefore, the Rogosinski means are defined by
.1(t) :=cos(?t�2).

In Section 2 we are interested in the generalized Rogosinski means,
denoted by Rn, j , which were introduced in the same paper [10] by
Rogosinski and which may be defined by .j (t) :=cos( j&1�2)?t for all
natural j # N. They are not widely used in approximation theory except for
the classical case j=1. Perhaps the reason is the fact that they have for all
j # N the same order of approximation as the classical one.

However, the system [.j] ( j # N) has a remarkable property��it is an
orthogonal system on [0, 1] with the boundary conditions .j (0)=1,
.j (1)=0 for all j # N. This circumstance inspired us to consider arbitrary
means (1) defined by .(k�n)=*k(n) for which the Fourier representation

.= :
�

j=1

aj.j , aj :=2 |
1

0
. } .j (3)

holds. It is quite surprising that some properties of the generalized
Rogosinski means Rn, j defined by .j also hold for arbitrary summation
methods (1) defined by ., provided the representation (3) is valid. Indeed,
if we assume that the series in (3) converges absolutely, then due to the
boundary conditions .(0)=1, .j (0)=1 the equality

:
�

j=1

aj=1

holds which implies

f&Un f= :
�

j=1

aj ( f&Rn, j f ). (4)
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This equality proposes that Un has the same approximation properties as
Rn, j , which are the same for each j # N.

In Section 3 we shall consider the quantity (2) for the operators Un

defined by . for which (3) is valid.

2. THE GENERALIZED ROGOSINSKI MEANS

To simplify the notations let mj :=( j&1�2)?. The Rogosinski means Rn, j

defined by .j (t)=cos mjt form for each j # N a bounded linear operator on
C2? into C2? . More precisely, we will find an exact asymptotic expression
for the norms &Rn, j &. For this purpose we use a result which has essentially
been proved in [12]. In fact, if the means (1) are defined by a continuous
function . # C[0, 1], .(0)=1, .(1)=0 for which .(k�n)=*k(n), then

sup
n # N

&Un&=
2
? |

�

0 } |
1

0
.(t) cos xt dt } dx. (5)

Theorem 1. For all j # N,

sup
n # N

&Rn, j &=
2
?

:
2j&2

k=0
|

?

0

sin t
t+k?

dt=
4
?2 log j+O(1).

Proof. Let us denote

�j (x) :=|
1

0
.j (t) cos xt dt, (6)

where .j (t)=cos mj t. Then for x{mj we have

�j (x)=(&1) j+1 mj cos x
m2

j &x2 =
1
2 \

sin(x&mj )
x&mj

+
sin(x+mj )

x+mj + . (7)

Hence, if x # (ml&1 , ml) (l # N, m0 :=0), then the sign-function of �j has
the values

sgn �j (x)={(&1) j+l,
(&1) j+l+1,

1�l�j,
l� j+1.

We split the integral (5) for .j into parts, and therefore

|
�

0
|�j |= :

j

l=1
|

ml

m l&1

(&1) j+l �j+ :
�

l=j+1
|

m l

ml&1

(&1) j+l+1 �j . (8)
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If we denote, as usual, the integral sine by

Si(x) :=|
x

0

sin t
t

dt,

then we obtain by (7)

Si( j?)&Si( j&1)?, l=1,

2 |
ml

ml&1

�j={Si(l&j )?&Si(l&j&1)? (9)

+Si(l+j&1)?&Si(l+j&2)?, l�2.

The first sum in (8) can be written as

2 :
j

l=1
|

m l

ml&1

(&1) j+l �j=(&1) j _Si( j&1) ?&Si( j?)+ :
j

l=2

(&1) l (Si(l&j )?

&Si(l&j&1)?+Si(l+j&1)?&Si(l+j&2)?)&
=Si(2j&1)?+2 :

2j&2

l=1

(&1) l+1 Si(l?). (10)

For the second sum in (8) we have to prove that the series converges. Let
n>j+1, then the partial sum of the series in (8) can be computed in view
of (9) which gives

2 :
n

l=j+1
|

ml

ml&1

(&1) j+l+1 �j= :
n

l=j+1

(&1) j+l+1 (Si(l&j ) ?&Si(l&j&1)?

+Si(l+j&1)?&Si(l+j&2)?)

=(&1)n+j+1 (Si(n&j ) ?&Si(n+j&1)?)

+Si(2j&1)?+2 :
n+j&1

l=2j&1

(&1) l Si(l?)

&2 :
n&j&1

l=1

(&1) l Si(l?).

The last equality and (10)imply that for the partial sum in (8) we have
(n>j+1)

|
mn

0
|�j |=(&1)n+j+1 (Si(n&j )?&Si(n+j&1)?)�2+Si(2 j&1)?

+2 :
2j&2

l=1

(&1) l+1 Si(l?)+ :
n+j&1

l=n&j

(&1) l Si(l?). (11)
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For the last sum it holds that

:
n+j&1

l=n&j

(&1) l Si(l?)= :
2j

l=1

(&1)n&j+l&1 Si(n&j+l&1)?

=(&1)n&j :
j

l=1

(Si(n&j+2l&2) ?&Si(n&j+2l&1)?).

Since Si(x) � ?�2 as x � �, from (11) after taking the limit as n � � we
have

|
�

0
|�j |=Si(2 j&1)?+2 :

2j&2

l=1

(&1) l+1 Si(l?). (12)

By the definition of the integral sine

Si(2j&1)?= :
2j&2

l=0
|

(l+1)?

l?

sin t
t

dt= :
2j&2

l=0

(&1) l |
?

0

sin u
u+l?

du

=|
?

0

sin u
u

du+ :
j&1

l=1
\|

?

0

sin u
u+2l?

du&|
?

0

sin u
u+(2l&1)?

du+ .

Once more along the same lines we get

:
2j&2

l=1

(&1) l+1 Si(l?)= :
j&1

l=1
|

?

0

sin u
u+(2l&1)

du,

and (12) and (5) establish our first assertion.
In view of the inequality

1
? \

1
2

+
1
3

+ } } } +
1

2j&1+� :
2j&2

k=1

1
t+k?

�
1
? \1+

1
2

+ } } } +
1

2j&2+ ,

valid for 0�t�?, it follows that

:
2j&2

k=1

1
t+k?

=
1
?

log j+O(1).

The second assertion may now be obtained from the first one. This com-
pletes the proof.

Next we establish that the generalized Rogosinski means Rn, j ( j # N)
have the same order of approximation as the classical one ( j=1).
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Lemma 1. Let Sn f be the nth partial sum of the Fourier series of f # C2? .
Then

Rn, j ( f, x)= 1
2 [Sn( f, x+mj�n)+Sn( f, x&mj�n)]. (13)

This is an immediate consequence of some trigonometric computation.

Remark. The equality (13) has often been considered as the definition
of the Rogosinski means (cf. [1, Chap. VII, Sect. 4]).

Lemma 1 yields the following statement.

Proposition. Let En( f ) be the best approximation of f # C2? by tri-
gonometric polynomials of degree not exceeding n, and |2( f, $) be the second
modulus of continuity. Then

& f&Rn, j f &C 2?�(1+&Rn, j&) En( f )+
1
2

|2 \ f,
mj

n + .

The proof, which is similar to that of Theorem 2.4.8 in [2], is omitted.
Using the Theorem of Jackson and properties of the modulus of con-

tinuity, it follows from the proposition that there exists a constant
Mj=O( j 2) for which

& f&Rn, j f &C 2?�Mj|2 \ f,
1
n+ .

Thus, for the Rogosinski means Rn, j the order of approximation is the
same for all j # N. Moreover by ([2, Problem 1.5.3(iv) and Lemma 1.5.4]),
for f # W2

|2 \ f,
1
n+=O(n&2)

and better properties of f such as f # Wr (r>2) do not imply better
approximation. Similar arguments are valid also for arbitrary means for
which (4) holds. This is the main reason why we shall consider the quantity
(2) only for the classes W1 and W2. For more refined Lipschitz classes our
method is still not good enough.

3. MEASURE OF APPROXIMATION FOR
SOME MEANS OF FOURIER SERIES

We shall consider the measure of approximation (2) for the operators (1)
defined by a function . for which the representation (3) holds. An integral
representation of the generalized Rogosinski means is needed.
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Lemma 2. For all 2?-periodic functions f, Lebesgue integrable over
(&?, ?), we have

Rn, j ( f, x)=
1
? |

�

&�
�j (u) f \x&

u
n+ du,

where the function �j has the representation (7).

The proof is similar to the classical ( j=1) one (cf. [6, pp. 182�183]).

Corollary 1. Let the operator Un be defined by the function . in (3)
for which

:
�

j=1

|aj | log j<�.

Then for f # C2? we have

Un( f, x)=
1
? |

�

&�
�(u) f \x&

u
n+ du,

where

�(u) := :
�

j=1

aj�j (u) (14)

and �j has the representation (7).

Proof. From (4) it follows that

Un( f, x)= :
�

j=1

ajRn, j ( f, x).

Hence, using the Lebesgue dominated convergence theorem, Lemma 2, and
Theorem 1, we verify that Corollary 1 is valid.

Now we are ready to prove our main result.

Theorem 2. Let the operator Un be defined by the function . in (3) for
which

:
�

j=1

|aj | log j<�.
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If for =>0

81(t) :=|
�

t \|
1

0
.(u) cos ux du+ dx=O(t&1&=) (t � �), (15)

then

e(W1, Un)=
2

?n |
�

0
|81(t)| dt+O(n&1&=) (n � �).

Proof. By Proposition 4.1.1 of [6] we have

e(W1, Un)= sup
f # W0

1
|Un( f, 0)|, (16)

where the subclass W 1
0/W1 consists of functions f for which f (0)=0. By

Corollary 1 it follows that

Un( f, 0)=
1
? |

�

&�
�(u) f \&

u
n+ du=

1
? |

�

0
�(u) \ f \u

n++f \&
u
n++ du (17)

by using the evenness of � (by (14) and (7)). Since ( f (t)+f (&t))�2 # W 1
0

provided f # W 1
0 , then

e(W1, Un)=
2
?

sup
f # W1

0, e
} |

�

0
�(t) f \ t

n+ dt } , (18)

where W 1
0, e denotes the class of all even functions belonging to W 1

0 .
The function � in (14) can be written in the form

�(x)=|
1

0
.(t) cos xt dt (19)

due to (3) and (6). So for 81 in (15) we have

81(t)=|
�

t
�(u) du, (20)

and integration by parts in (18) gives

e(W1, Un)=
2

?n
sup

f # W1
0, e
} |

�

0
81(t) f $ \ t

n+ dt } . (21)
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Thus, the definition of W 1
0, e yields

e(W1, Un)�
2

?n |
�

0
|81(t)| dt, (22)

and we will prove that (22) is asymptotically exact.
For the proof we define an even 2? -periodic function f1 which for

0�t�? has the form

f1(t) :=|
t

0
sgn 81(nu) du.

Therefore, f1 # W 1
0, e and

f $1 \ t
n+=sgn 81(t) for almost every t # [0, n?]. (23)

By (17) and 23) we have

Un( f1 , 0)=
2
? |

�

0
�(t) f1 \ t

n+ dt

=
2

?n |
�

0
81(t) f $1 \ t

n+ dt

=
2

?n |
�

0
|81(t)| dt+

2
?n

:n , (24)

where

:n :=|
�

n? _ f $1 \ t
n+&sgn 81(t)& 81(t) dt.

Since

|:n |�2 |
�

n?
|81(t)| dt,

we obtain :n=O(n&=) using the assumption (15). Finally, the proof is
completed due to (16) and (24).

For the class W2 the following result is valid.
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Theorem 3. Let the operator Un be defined by the function . in (3) for
which

:
�

j=1

|aj | log j<�.

If for =>0,

82(t) :=|
�

t
dv |

�

v \|
1

0
.(u) cos ux du+ dx=O(t&1&=) (t � �), (25)

then we have

e(W2, Un)=
2

?n2 |
�

0
|82(t)| dt+O(n&2&=) (n � �).

Proof. From (19) and (20) it follows by (25) that

82(t)=|
�

t
81(u) du. (26)

For the class W2 the equality (18) is valid in the form

e(W2, Un)=
2
?

sup
f # W2

0, e
} |

�

0
�(t) f \ t

n+ dt } ,
where the subclass W 2

0, e/W2 consists of even functions f for which
f (0)=0. By the definition of W2 the derivative f $ is absolutely continuous.
Due to the evenness of f the derivative f $ is odd and therefore f $(0)=0.
Integrating (18) twice by parts and using (26) we obtain

e(W2, Un)=
2

?n2 sup
f # W2

0, e
} |

�

0
82(t) f " \t

n+ dt } .
Hence, by the definition of W 2

0 we have

e(W2, Un)�
2

?n2 |
�

0
|82(t)| dt. (27)

Let us now construct a function f2 # W 2
0, e for which the inequality (27)

is asymptotically exact. Let

f2(t) :=|
t

0 \|
x

0
sgn 82(nu) du+ dx for 0�t�?�2,

f2(t) :=2f2(?�2)&f2(?&t) for ?�2�t�?
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with an even and 2?-periodic extension for all t # R. Then f2 # W 2
0, e and due

to this (17)

Un( f2 , 0)=
2
? |

�

0
�(t) f2 \ t

n+ dt=
2

?n2 |
�

0
82(t) f "2 \ t

n+ dt

after integration by parts using (20) and (26). By the definition of f2 we get

f "2 \ t
n+=sgn 82(t) for almost every t # [0, n?�2]

which implies

Un( f2 , 0)=
2

?n2 |
�

0
|82(t)| dt+

2
?n2 ;n ,

where

;n :=|
�

n?�2 _f "2 \ t
n+&sgn 82(t)& 82(t) dt.

The proof is completed similarly to that of Theorem 2.

4. APPLICATIONS

We give three examples, the generalized Rogosinski means, the Jackson�
de la Valle� e Poussin summation method, and the Riesz means, to show
how Theorems 2 and 3 apply for these cases.

(a) The generalized Rogosinski means are defined by

.j (t)=cos mjt (mj :=( j&1�2)?).

The case j=1 has been considered by Dzjadyk et al. [3], where numerical
estimates for the remainders were also obtained.

The representation (3) is valid trivially. For 81 in (15) we obtain by (6)
and (7) that

81(t)=&1
2 (si(t&mj)+si(t+mj )),

where the integral sine is defined by

si(t) :=&|
�

t

sin x
x

dx. (28)
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The first equality in (7) implies

81(t)=(&1) j mj |
�

t

cos x
x2&m2

j

dx

=(&1) j mj \2 |
�

t

x sin x
(x2&m2

j )2 dx&
sin t

t2&m2
j +

=Oj (t&2) (mj<t � �).

Therefore, the assumption (15) is valid for ==1, and the result will be writ-
ten as

e(W1, Rn, j )=
1

?n |
�

0
|si(t&mj )+si(t+mj )| dt+Oj (n&2) (n � �)

for each fixed j # N.
For the function 82 in (25) we have by (26) that

82(t)=&1
2 |

�

t
(si(u&mj )+si(u+mj )) du

= 1
2 (t&mj ) si(t&mj )+ 1

2 (t+mj ) si(t+mj ).

Using the definition (28) we get

82(t)=&
1
2

(t&mj ) |
�

t&mj

sin x
x

dx&
1
2

(t+mj ) |
�

t+mj

sin x
x

dx.

Integrating three times by parts yields

82(t)=(&1) j mj cos t
t2&m2

j

+(&1) j 4mjt sin t
(t2&m2

j )2

+3(t&mj ) |
�

t&mj

cos x
x4 dx+3(t+mj ) |

�

t+mj

cos x
x4 dx.

Now 82(t)=Oj (t&2) (mj<t � �) and therefore the assumption (25) is
valid for ==1. Thus, Theorem 3 implies

e(W2, Rn, j )=
1

?n2 |
�

0
|(t&mj ) si(t&mj )+(t+mj ) si(t+mj )| dt+Oj (n&3)

(n � �)

for each fixed j # N.
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(b) The Jackson�de la Valle� e Poussin summation method can be
defined ([2, pp. 130�131, 205, 517]) by

.(t) :={1&6t2+6t3,
2(1&t)3,

0�t�1�2,
1�2�t�1.

Obviously ." is continuous. Then integrating by parts twice in (19) gives
(cf. [2, p. 516])

�(x)=
96
x4 sin4 x

4
.

The function � has some good properties. It is nonnegative and for the
Fourier coefficients aj we have by (3) and (19) that

aj=2�(mj )=O( j &4).

Therefore the series � |aj | log j converges and due to (20)

81(t)�32�t3.

If we denote the Jackson�de la Valle� e Poussin summation method by Jn ,
then using Theorem 2, after some calculations we obtain the equality

e(W1, Jn)=
12log 2

?n
+

cn

n3 ,

where 0�&cn�32�?3.
For 82 by (26) we have

82(t)�16�t2.

From Theorem 3 it follows that

e(W2, Jn)=
6
n2+

cn

n3 ,

where 0�&cn�64�?2.

(c) The Riesz means Rn, $ are defined by

.(t)=(1&t2)$ ($>0).

The cosine�transform for this . is (cf. [2, p.516])

�(x)=c$J$+1�2(x)�x$+1�2,
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where Jp is the Bessel function of order p and

c$ :=2$&1�21($+1) ?1�2.

This is intended to shorten the notations in the next part.
We need two well known formulae for the Bessel functions

Jp(x)=O(x&1�2) (x � �), (29)

| x&p+1Jp(x) dx=&x&p+1Jp&1(x). (30)

In view of (29) we have �(x)=O(x&$&1) (x � �) which gives by (3) and
(19) that aj=O( j &$&1) ( j � �). Therefore, the series � |aj | log j is con-
vergent for all $>0.

To check the validity of the assumptions (15) and (25) we have to
integrate by parts using (30). Then by (20) and (29)

81(t)=c$ |
�

t

J$+1�2(x)
x$+1�2 dx=c$

J$&1�2(t)
t$+1�2 &c$ |

�

t

J$&1�2(x)
x$+3�2 dx=O(t&$&1)

which gives the assumption (15). For the last integral we have by (30) and
(29)

|
�

t

J$&1�2(x)
x$+3�2 dx=

J$&3�2(t)
t$+3�2 &3 |

�

t

J$&3�2(x)
x$+5�2 dx=O(t&$&2).

Therefore,

81(t)=c$
J$&1�2(t)

t$+1�2 +O(t&$&2) (t � �)

and we have for 82 by (26)

82(t)=c$ |
�

t

J$&1�2(x)
x$+1�2 dx+O(t&$&1). (31)

In addition, by (30)

|
�

t

J$&1�2(x)
x$+1�2 dx=

J$&3�2(t)
t$+1�2 &2 |

�

t

J$&3�2(x)
x$+3�2 dx=O(t&$&1),

and then by (31)

82(t)=O(t&$&1) (t � �).
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Thus, all the conditions of Theorems 2 and 3 are fulfilled, the result is as
follows:

The Riesz means have the measures of approximation

e(W1, Rn, $)=
2$+1�21($+1)

?3�2n |
�

0 } |
�

t

J$+1�2(x)
x$+1�2 dx } dt

+O(n&$&1) (n � �),

e(W2, Rn, $)=
2$+1�21($+1)

?3�2n2 |
�

0
t } |

�

t

J$&1�2(x)
x$+3�2 dx } dt

+O(n&$&2) (n � �)

valid for all $>0.

Remark. The results fit well with the case $=1 considered in [12] as
an example.
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